Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Environ Int ; 185: 108521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38508052

RESUMO

Electronic cigarettes (e-cigarettes) have rapidly gained popularity as alternatives to traditional combustible cigarettes. However, their long-term health impact remains uncertain. This study aimed to investigate the effects of chronic exposure to e-cigarette aerosol (ECA) in mice compared to conventional cigarette smoke (CS) exposure. The mice were exposed to air (control), low, medium, or high doses of ECA, or a reference CS dose orally and nasally for eight months. Various cardiovascular and pulmonary assessments have been conducted to determine the biological and prosthetic effects. Histopathological analysis was used to determine structural changes in the heart and lungs. Biological markers associated with fibrosis, inflammation, and oxidative stress were investigated. Cardiac proteomic analysis was applied to reveal the shared and unique protein expression changes in ECA and CS groups, which related to processes such as immune activation, lipid metabolism, and intracellular transport. Overall, chronic exposure to ECA led to adverse cardiovascular and pulmonary effects in mice, although they were less pronounced than those of CS exposure. This study provides evidence that e-cigarettes may be less harmful than combustible cigarettes for the long-term health of the cardiovascular and respiratory systems in mice. However, further human studies are needed to clarify the long-term health risks associated with e-cigarette use.


Assuntos
Fumar Cigarros , Sistemas Eletrônicos de Liberação de Nicotina , Animais , Humanos , Camundongos , Aerossóis/toxicidade , Pulmão , Proteômica
2.
Anal Methods ; 16(14): 2111-2119, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38516815

RESUMO

Microfluidic-based assessment platforms have recently attracted considerable attention and have been widely used for evaluating in vitro toxic effects. In the present study, we developed an original real-time aerosol exposure system, which focused on a self-designed microfluidic chip, in order to evaluate the toxicological effects following exposure to inhalable aerosols. The three-layer structured microfluidic chip enables real-time aerosol exposure at the gas-liquid interface. The comprehensive detection of toxic effect biomarkers based on this assessment platform encompasses transcriptomics, in situ fluorescence detection, and the identification of extracellular secretagogues. Correspondingly, the effects of selected inhalable aerosols such as cigarette smoke (CS), heated tobacco product smoke (HS), and electronic cigarette smoke (ES) on gene expression profiles, cell viability, intracellular biomarkers (reactive oxygen species and nitric oxide), apoptosis (caspase-3/7 activity), and extracellular biomarkers (IL-8, IL-1ß, TNF-α, and malondialdehyde) in the BEAS-2B cells present on the chip were investigated. Following exposure to aerosols derived from CS, HS, and ES, the transcriptome analysis revealed differential expression in these cells. In addition, the overlapping DEGs from the different treatment groups were found to be primarily associated with stimuli and inflammatory responses. Correspondingly, each of the three categories of selected inhalable aerosols was confirmed to induce significant changes in biomarkers that were associated with toxic effects. These results suggest that the original real-time aerosol exposure system centered around a self-designed chip can be applied to the toxic effect evaluation of inhalable aerosol exposure.


Assuntos
Aerossóis , Biomarcadores , Microfluídica , Poluição por Fumaça de Tabaco , Aerossóis/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Poluição por Fumaça de Tabaco/efeitos adversos , Humanos , Linhagem Celular
3.
J Hazard Mater ; 466: 133328, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290336

RESUMO

Airborne aerosols were collected in six size classes (PM<0.1, PM0.1-0.5, PM0.5-1, PM1-2.5, PM2.5-10 and PM>10) to investigate aerosol health risks in remote and industrial areas in Japan. We focused on heavy metals and their water-dispersed fractions. The average concentration of heavy metals was 18 ± 25-86 ± 48 ngm-3 for PM<0.1, 46 ± 19-154 ± 80 for PM0.5-1 ngm-3, 98 ± 49-422 ± 186 ngm-3 for PM1-2.5, 321 ± 305-1288 ± 727 ngm-3 for PM2.5-10 and 65 ± 52-914 ± 339 ngm-3 or PM>10, and these concentrations were higher in industrial areas. Heavy metals emitted from domestic anthropogenic sources were added to the long-range transport component of the aerosols. The water-dispersed fraction of heavy metals contained 3.3-40.1% of the total heavy metals in each size class. The relative contribution of Zn and other species (As, Cd, Cr, Ni, Pb, Mn, V and Cu) increased in the water-dispersed fraction. Smaller particles contained greater proportions of the water-dispersed heavy metal fraction. Carcinogenic risk (CR) and the hazard index (HI) were estimated for each size class. The CR of carcinogens was at acceptable levels (<1 ×10-6) for five particle size fractions. The HI values for carcinogens and noncarcinogens were also below acceptable levels (<1) for the same five size fractions. The estimated CR and HI values were dominated by contributions from the inhalation process.


Assuntos
Metais Pesados , Humanos , Japão , Medição de Risco , Metais Pesados/toxicidade , Metais Pesados/análise , Carcinógenos/análise , Aerossóis/toxicidade , Água , Monitoramento Ambiental , China
4.
Toxicology ; 500: 153683, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38013136

RESUMO

Scientific progress and ethical considerations are increasingly shifting the toxicological focus from in vivo animal models to in vitro studies utilizing physiologically relevant cell cultures. Consequently, we evaluated and validated a three-dimensional (3D) model of the human lung using Calu-3 cells cultured at an air-liquid interface (ALI) for 28 days. Assessment of seven essential genes of differentiation and transepithelial electrical resistance (TEER) measurements, in conjunction with mucin (MUC5AC) staining, validated the model. We observed a time-dependent increase in TEER, genetic markers of mucus-producing cells (muc5ac, muc5b), basal cells (trp63), ciliated cells (foxj1), and tight junctions (tjp1). A decrease in basal cell marker krt5 levels was observed. Subsequently, we utilized this validated ALI-cultured Calu-3 model to investigate the adversity of the aerosols generated from three flavored electronic cigarette (EC) e-liquids: cinnamon, vanilla tobacco, and hazelnut. These aerosols were compared against traditional cigarette smoke (3R4F) to assess their relative toxicity. The aerosols generated from PG/VG vehicle control, hazelnut and cinnamon e-liquids, but not vanilla tobacco, significantly decreased TEER and increased lactate dehydrogenase (LDH) release compared to the incubator and air-only controls. Compared to 3R4F, there were no significant differences in TEER or LDH with the tested flavored EC aerosols other than vanilla tobacco. This starkly contrasted our expectations, given the common perception of e-liquids as a safer alternative to cigarettes. Our study suggests that these results depend on flavor type. Therefore, we strongly advocate for further research, increased user awareness regarding flavors in ECs, and rigorous regulatory scrutiny to protect public health.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Animais , Humanos , Aerossóis/toxicidade , Aromatizantes/toxicidade , Pulmão , Nicotina
5.
Environ Int ; 179: 108180, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37690220

RESUMO

E-cigarettes, also known as electronic nicotine delivery systems (ENDS), are mainly used among adolescents and young adults. Similar to traditional cigarettes, different concentrations of nicotine are also added to E-cigarette's liquid (E-liquid), but due to the supplementation of chemicals such as propylene glycol (PG), vegetable glycerin (VG) and flavors, it is difficult to determine the risk after using E-cigarettes. And given to the specificity of the aerosol particle composition and atomization process of E-cigarettes, it is necessary to assess the neurotoxic effects of long-term E-cigarettes use. In this study, two commercial nicotine-containing (5%) and nicotine-free E-liquids were diluted to investigate the neurobehavioral changes and addictive tendencies of developing C. elegans after sub-chronic exposure to E-liquid. The results showed that sub-chronic exposure of E-liquid could lead to impaired growth and development of nematodes, abnormal general neuromotor behavior and advanced learning and memory behavior, and nicotine-containing E-liquid could also lead to increased addiction tendency of nematodes. Although the damage effect of nicotine free E-liquid is smaller than that of the nicotine-containing group, its toxic effect cannot be ignored. Further analysis of the neurotoxicity mechanism found that redox imbalance-mediated mitochondrial stress and aging may be important causes of E-liquid-induced biological damage. The biosafety of e-cigarette aerosols was also included in the assessment. The study found that the heated atomization process did not alter the E-liquid components, and E-cigarette aerosols still have the effect of interfering with the growth and development of nematodes and neurobehavior, and its addictive nature is also of concern. This study can provide new ideas for future studies on the neurotoxic effects and safety assessment of the E-cigarettes, and provide theoretical reference for the study on the injury mechanism of E-cigarettes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Síndromes Neurotóxicas , Adolescente , Humanos , Adulto Jovem , Animais , Caenorhabditis elegans , Nicotina/toxicidade , Aerossóis/toxicidade , Envelhecimento
6.
Food Chem Toxicol ; 179: 113917, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451597

RESUMO

Electronic nicotine delivery systems (ENDS) are generally recognized as less harmful alternatives for those who would otherwise continue to smoke cigarettes. The potential toxicity of aerosols generated from JUUL Device and Virginia Tobacco (VT3) or Menthol (ME3) JUULpods at 3.0% nicotine concentration was assessed in rats exposed at target aerosol concentrations of 1400 µg/L for up to 6 h/day on a 5 day/week basis for at least 90 days (general accordance with OECD 413). 3R4F reference cigarette smoke (250 µg/L) and Filtered Air were used as comparators. JUUL ENDS product aerosol exposures at >5x the 3R4F cigarette smoke level resulted in greater plasma nicotine and cotinine levels (up to 2x). Notable cigarette smoke related effects included pronounced body weight reductions in male rats, pulmonary inflammation evidenced by elevated lactate dehydrogenase, pro-inflammatory cytokines and neutrophils in bronchoalveolar lavage fluid, increased heart and lung weights, and minimal to marked respiratory tract histopathology. In contrast, ENDS aerosol exposed animals had minimal body weight changes, no measurable inflammatory changes and minimal to mild laryngeal squamous metaplasia. Despite the higher exposure levels, VT3 and ME3 did not result in significant toxicity or appreciable respiratory histopathology relative to 3R4F cigarette smoke following 90 days administration.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Masculino , Ratos , Animais , Nicotina/farmacologia , Ratos Sprague-Dawley , Aerossóis e Gotículas Respiratórios , Produtos do Tabaco/toxicidade , Pulmão , Aerossóis/toxicidade
7.
J Appl Toxicol ; 43(8): 1225-1241, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36869434

RESUMO

The prevalence of allergic diseases is constantly increasing since few decades. Anthropogenic ultrafine particles (UFPs) and allergenic aerosols is highly involved in this increase; however, the underlying cellular mechanisms are not yet understood. Studies observing these effects focused mainly on singular in vivo or in vitro exposures of single particle sources, while there is only limited evidence on their subsequent or combined effects. Our study aimed at evaluating the effect of subsequent exposures to allergy-related anthropogenic and biogenic aerosols on cellular mechanism exposed at air-liquid interface (ALI) conditions. Bronchial epithelial BEAS-2B cells were exposed to UFP-rich combustion aerosols for 2 h with or without allergen pre-exposure to birch pollen extract (BPE) or house dust mite extract (HDME). The physicochemical properties of the generated particles were characterized by state-of-the-art analytical instrumentation. We evaluated the cellular response in terms of cytotoxicity, oxidative stress, genotoxicity, and in-depth gene expression profiling. We observed that single exposures with UFP, BPE, and HDME cause genotoxicity. Exposure to UFP induced pro-inflammatory canonical pathways, shifting to a more xenobiotic-related response with longer preincubation time. With additional allergen exposure, the modulation of pro-inflammatory and xenobiotic signaling was more pronounced and appeared faster. Moreover, aryl hydrocarbon receptor (AhR) signaling activation showed to be an important feature of UFP toxicity, which was especially pronounced upon pre-exposure. In summary, we were able to demonstrate the importance of subsequent exposure studies to understand realistic exposure situations and to identify possible adjuvant allergic effects and the underlying molecular mechanisms.


Assuntos
Poluentes Atmosféricos , Hipersensibilidade , Humanos , Material Particulado/análise , Poluentes Atmosféricos/química , Alérgenos/toxicidade , Xenobióticos , Células Epiteliais/metabolismo , Aerossóis/toxicidade , Tamanho da Partícula
8.
Food Chem Toxicol ; 175: 113708, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36889430

RESUMO

Homemade e-liquids and power-adjustable vaping devices may carry higher risks than commercial formulations and fixed-power devices. This study used human macrophage-like and bronchial epithelial (NHBE) cell cultures to investigate toxicity of homemade e-liquids containing propylene glycol and vegetable glycerin (PG/VG), nicotine, vitamin E acetate (VEA), medium-chain fatty acids (MCFAs), phytol, and cannabidiol (CBD). SmallAir™ organotypic epithelial cultures were exposed to aerosols generated at different power settings (10-50 W). Carbonyl levels were measured, and endpoints reflecting epithelial function (ciliary beating frequency [CBF]), integrity (transepithelial electrical resistance [TEER]), and structure (histology) were investigated. Treatment with nicotine or VEA alone or with PG/VG did not impact cell viability. CBD, phytol, and lauric acid caused cytotoxicity in both culture systems and increased lipid-laden macrophages. Exposure of SmallAir™ organotypic cultures to CBD-containing aerosols resulted in tissue injury and loss of CBF and TEER, while PG/VG alone or with nicotine or VEA did not. Aerosols generated with higher power settings had higher carbonyl concentrations. In conclusion, the presence and concentration of certain chemicals and device power may induce cytotoxicity in vitro. These results raise concerns that power-adjustable devices may generate toxic compounds and suggest that toxicity assessments should be conducted for both e-liquid formulations and their aerosols.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Humanos , Nicotina/toxicidade , Nicotina/química , Brônquios , Verduras , Aerossóis/toxicidade , Glicerol/química , Propilenoglicol/química
9.
Altern Lab Anim ; 51(1): 55-79, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36821083

RESUMO

The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to identify, discuss and develop recommendations for optimal scientific and technical approaches for conducting in vitro assays, to assess potential toxicity within and across tobacco and various next generation nicotine and tobacco products (NGPs), including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDS). The third workshop (24-26 February 2020) summarised the key challenges and made recommendations concerning appropriate methods of test article generation and cell exposure from combustible cigarettes, HTPs and ENDS. Expert speakers provided their research, perspectives and recommendations for the three basic types of tobacco-related test articles: i) pad-collected material (PCM); ii) gas vapour phase (GVP); and iii) whole smoke/aerosol. These three types of samples can be tested individually, or the PCM and GVP can be combined. Whole smoke/aerosol can be bubbled through media or applied directly to cells at the air-liquid interface. Summaries of the speaker presentations and the recommendations developed by the workgroup are presented. Following discussion, the workshop concluded the following: that there needs to be greater standardisation in aerosol generation and collection processes; that methods for testing the NGPs need to be developed and/or optimised, since simply mirroring cigarette smoke testing approaches may be insufficient; that understanding and quantitating the applied dose is fundamental to the interpretation of data and conclusions from each study; and that whole smoke/aerosol approaches must be contextualised with regard to key information, including appropriate experimental controls, environmental conditioning, analytical monitoring, verification and performance criteria.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Nicotiana/toxicidade , Produtos do Tabaco/toxicidade , Nicotina/toxicidade , Aerossóis/toxicidade , Técnicas In Vitro
10.
Artigo em Inglês | MEDLINE | ID: mdl-36767274

RESUMO

BACKGROUND: Electronic cigarettes (ECs) are often marketed as a safer alternative to combustible tobacco products. The global EC market has rapidly expanded since their introduction, creating an urgent need for research describing the toxicity and chemical composition of ECs. We conducted an umbrella review to summarize the evidence from existing systematic reviews (SRs). METHODS: The search for SRs was conducted across four electronic databases through 25 January 2022. Methodological quality was assessed using the AMSTAR-2 quality appraisal tool. RESULTS: Twenty-five SRs were included in our umbrella review. Chemical profiles widely varied across studies included in the reviews, which was mainly attributed to the lack of standardized protocols investigating the constituents, and differences in EC devices and e-liquids tested. Metals were more abundant in some EC aerosols than cigarettes, while carbonyls were typically found at lower levels. There was consistent evidence of in vitro toxicity from EC aerosol and e-liquid exposure. AMSTAR-2 revealed important limitations across reviews. CONCLUSIONS: While most reviews concluded that ECs were likely less harmful than cigarettes, there was hesitancy to draw clear conclusions due to variable analytical procedures and inconsistent findings among the included studies. Future SRs with improved methodology and reporting are needed to adequately inform tobacco regulatory actions.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aerossóis/toxicidade , Metais
11.
Drug Test Anal ; 15(10): 1156-1163, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35712913

RESUMO

Use of electronic cigarettes (e-cigarettes) has increased significantly over the past decade due to consumer perception that these products represent a less risky alternative to combustible cigarettes. E-liquids generally contain a simple mix of vegetable glycerin, propylene glycerol, nicotine, organic acids, and flavourings. Regulators require that harmful and potentially harmful constituents (HPHCs) that might cause harm to the consumer must be monitored in the aerosol generated by e-cigarettes and in cigarette smoke (CS). To quantify HPHCs in aerosols from commercial flavoured e-cigarettes in Chinese market, this study has systematically compared levels of HPHCs, including eight carbonyls, five volatile organic compounds, four tobacco-specific nitrosamines, 16 polycyclic aromatic hydrocarbons, and seven heavy metals, in the aerosols of four market-leading flavoured e-cigarettes and mainstream CS, alongside in vitro cytotoxicity and mutagenicity assays. The vast majority of HPHCs were either undetected or significantly lower in the e-cigarette aerosols than in commercial CS or reference CS (3R4F). Where HPHCs were detected, there were small variations among the different flavoured e-cigarettes. In the neutral red uptake and Ames assays, aqueous extracts of the e-cigarette aerosols did not induce obvious cytotoxicity or mutagenicity, whereas CS aqueous extract showed dose-related cytotoxicity and mutagenicity. Collectively, these results indicate that use of e-cigarettes might potentially lead to a significant reduction in exposure to harmful substances, with fewer cytotoxic and mutagenic effects, as compared with conventional smoking. Further studies based on human puffing conditions and longer evaluation periods will be needed to substantiate this potential.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Humanos , Produtos do Tabaco/análise , Nicotina/análise , Aerossóis/toxicidade , Nicotiana
12.
Drug Test Anal ; 15(10): 1145-1155, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35434934

RESUMO

Cigarette smoke is associated to severe chronic diseases. The most harmful components of cigarette smoke derive from the combustion process, which are significantly reduced in the electronic cigarette aerosol, thus providing a valid option in harm reduction strategies. To develop safer products, it is therefore necessary to screen electronic cigarette liquids (e-liquids) to meet high safety standards defined by government regulations. The aim of the present study was to evaluate the presence of metal- and plastic-derived contaminants in four different commercial e-liquids with high concentration of nicotine and their cytotoxic effect in normal human bronchial epithelial cells by a number of in vitro assays, in comparison with the 1R6F reference cigarette, using an air-liquid interface (ALI) exposure system. Moreover, we evaluated the effect of aerosol exposure on oxidative stress by measuring the production of reactive oxygen species and mitochondrial potential. Our results showed no contaminants in all e-liquids and a significantly reduced cytotoxic effect of e-liquid aerosol compared to cigarette smoke as well as a maintained mitochondria integrity. Moreover, no production of reactive oxygen species was detected with e-cigarette aerosol. In conclusion, these results support the reduced toxicity potential of e-cigs compared to tobacco cigarettes in an in vitro model resembling real life smoke exposure.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Humanos , Espécies Reativas de Oxigênio , Nicotiana , Aerossóis/toxicidade , Células Epiteliais
13.
Respir Res ; 23(1): 358, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528600

RESUMO

Electronic cigarettes (or e-cigarettes) can be used as smoking cessation aid. Some studies tend to show that they are less hazardous than tobacco cigarettes, even if it does not mean they are completely safe. The huge variation in study designs assessing in vitro toxicity of e-cigarettes aerosol makes it difficult to make comparisons and draw robust and irrefutable conclusions. In this paper, we review this heterogeneity (in terms of e-cigarette products, biological models, and exposure conditions) with a special focus on the wide disparity in the doses used as well as in the way they are expressed. Finally, we discuss the major issue of dosimetry and show how dosimetry tools enable to align data between different exposure systems or data from different laboratories and therefore allow comparisons to help further exploring the risk potential of e-cigarettes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Aerossóis/toxicidade
14.
J Appl Toxicol ; 42(10): 1701-1722, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35543240

RESUMO

Most flavors used in e-liquids are generally recognized as safe for oral consumption, but their potential effects when inhaled are not well characterized. In vivo inhalation studies of flavor ingredients in e-liquids are scarce. A structure-based grouping approach was used to select 38 flavor group representatives (FGR) on the basis of known and in silico-predicted toxicological data. These FGRs were combined to create prototype e-liquid formulations and tested against cigarette smoke (CS) in a 5-week inhalation study. Female A/J mice were whole-body exposed for 6 h/day, 5 days/week, for 5 weeks to air, mainstream CS, or aerosols from (1) test formulations containing propylene glycol (PG), vegetable glycerol (VG), nicotine (N; 2% w/w), and flavor (F) mixtures at low (4.6% w/w), medium (9.3% w/w), or high (18.6% w/w) concentration or (2) base formulation (PG/VG/N). Male A/J mice were exposed to air, PG/VG/N, or PG/VG/N/F-high under the same exposure regimen. There were no significant mortality or in-life clinical findings in the treatment groups, with only transient weight loss during the early exposure adaptation period. While exposure to flavor aerosols did not cause notable lung inflammation, it caused only minimal adaptive changes in the larynx and nasal epithelia. In contrast, exposure to CS resulted in lung inflammation and moderate-to-severe changes in the epithelia of the nose, larynx, and trachea. In summary, the study evaluates an approach for assessing the inhalation toxicity potential of flavor mixtures, thereby informing the selection of flavor exposure concentrations (up to 18.6%) for a future chronic inhalation study.


Assuntos
Fumar Cigarros , Administração por Inalação , Aerossóis/toxicidade , Animais , Feminino , Glicerol/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos , Propilenoglicol/toxicidade , Nicotiana
15.
Front Public Health ; 10: 830429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284363

RESUMO

Background: Acute respiratory distress syndrome (ARDS) is a serious respiratory disease, caused by severe infection, trauma, shock, inhalation of harmful gases and poisons and presented with acute-onset and high mortality. Timely and accurate identification will be helpful to the treatment and prognosis of ARDS cases. Herein, we report a case of ARDS caused by occupational exposure to waterproofing spray. To our knowledge, inhalation of waterproofing spray is an uncommon cause of ARDS, and what makes our case special is that we ruled out concurrent infections with some pathogens by using metagenomic next-generation sequencing (mNGS) as an auxiliary diagnosis, which presents the most comprehensive etiological examination of similar reports. Case Presentation: A previously healthy 25 years old delivery man developed hyperpyrexia, chest tightness, cough and expectoration. The symptoms occurred and gradually exacerbated after exposure to a waterproofing spray. The chest computed tomography (CT) finding showed diffuse ground glass and infiltrative shadows in both lungs. The diagnosis of ARDS related to waterproofing spray was established on the basis of comprehensive differential diagnosis and etiological examination. The patient achieved good curative effect after proper systemic glucocorticoid therapy. Conclusions: The diagnosis and differential diagnosis of acute respiratory failure for outdoor workers, such as delivery drivers or hikers, should be considered whether toxic aerosol exposure exists from daily contacts. The case can educate the public that more attention should be paid to avoid exposure to these chemicals by aerosols/ingestion mode and some preventive strategies should be taken in occupational environment. The treatment effect of glucocorticoids is significant in ARDS patients with general chemical damage caused by inhaling toxic gases and substances.


Assuntos
Exposição Ocupacional , Síndrome do Desconforto Respiratório , Adulto , Aerossóis/toxicidade , Gases , Humanos , Exposição por Inalação , Masculino , Exposição Ocupacional/efeitos adversos , Síndrome do Desconforto Respiratório/induzido quimicamente
16.
Environ Res ; 209: 112792, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35093308

RESUMO

Particulate matter with aerodynamic diameters ≤1 µm (PM1) in the atmosphere, especially that which is emitted from anthropogenic sources, can induce considerable negative effects on the cardiopulmonary system. To investigate the chemical emission characteristics and organic sources in Yuen Long (Hong Kong), both offline and online approaches for PM1 samples were applied by filter-based samplers and a Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM), respectively. The toxicological effects on human A549 lung alveolar epithelial cells were investigated, and associations between cytotoxicity and organic sources and compositions were evaluated. The organics from the Q-ACSM measurement were the largest contributor to submicron aerosols in both seasons of our study, and the mass fraction was higher in winter (60%) than it was in autumn (46%). Regarding organic sources, the mass fraction of hydrocarbon-like organics (HOA) increased from 7% in autumn to 38% in winter, whereas cooking organics (COA) decreased from 30% in autumn to 18% in winter, and oxygenated organics (OOA) decreased from 63% to 45%. Organic compounds contributed more during pollution episodes, and more secondary ions were formed by means of the oxidation process. Oxidative and inflammatory responses in A549 cells were found with PM1 exposures; the differences in chemical compositions resulted in the higher cytotoxicity in winter than autumn. The cooking organic aerosol in residential area was significantly correlated with cell inflammation. Both elemental carbon and specific inorganic ions (SO42- and Mg2+) contributed to the intracellular cytotoxicity. This study demonstrated that specific atmospheric particulate matter chemical properties and sources can trigger distinct cell reactions; the inorganic ions from cooking emissions cannot be disregarded in terms of their pulmonary health risks in residential areas.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Aerossóis/toxicidade , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental , Células Epiteliais , Humanos , Pulmão , Material Particulado/análise , Material Particulado/toxicidade , Estações do Ano
17.
Drug Chem Toxicol ; 45(6): 2561-2567, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34474637

RESUMO

An electronic cigarette is a rechargeable device that produces an inhaled aerosol containing varying levels of nicotine, and inorganic and organic toxicants and carcinogenic compounds. The aerosol is generated by heating a solution of propylene glycol and glycerin with nicotine and flavoring ingredients at a high temperature. The e-cigarette was developed and marketed as a safer alternative to the regular cigarette which is known to be injurious to human health. However, published studies suggest that the aerosol of e-cigarette can also have adverse health effects. The main objective of this review is to briefly describe some consequences of e-cigarette smoking, and to present data showing that the resulting increased oxidative stress and inflammation are likely to be involved in effecting to lung damage. Other organs are also likely to be affected. The aerosol contains varying amounts of organic and inorganic toxicants as well as carcinogens, which might serve as the source of such deleterious events. In addition, the aerosol also contains nicotine, which is known to be addictive. E-cigarette smoking releases these toxicants into the air leading to inhalation by nonsmokers in residential or work place areas. Unlike regular tobacco smoke, the long-term consequences of direct and secondhand exposure to e-cigarette aerosol have not been extensively studied but based on available data, e-cigarette aerosol should be considered harmful to human health.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Poluição por Fumaça de Tabaco , Humanos , Nicotina/toxicidade , Glicerol , Insuficiência de Múltiplos Órgãos/induzido quimicamente , Aerossóis/toxicidade , Aerossóis/análise , Propilenoglicol/análise , Inflamação/induzido quimicamente , Estresse Oxidativo , Carcinógenos
18.
J Hazard Mater ; 423(Pt B): 127246, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34844363

RESUMO

Tobacco smoking is classified as a human carcinogen. A wide variety of new products, in particular electronic cigarettes (e-cigs), have recently appeared on the market as an alternative to smoking. Although the in vitro toxicity of e-cigs is relatively well known, there is currently a lack of data on their long-term health effects. In this context, the aim of our study was to compare, on a mouse model and using a nose-only exposure system, the in vivo genotoxic and mutagenic potential of e-cig aerosols tested at two power settings (18 W and 30 W) and conventional cigarette (3R4F) smoke. The standard comet assay, micronucleus test and Pig-a gene mutation assay were performed after subacute (4 days), subchronic (3 months) and chronic (6 months) exposure. The generation of oxidative stress was also assessed by measuring the 8-hydroxy-2'-deoxyguanosine and by using the hOGG1-modified comet assay. Our results show that only the high-power e-cig and the 3R4F cigarette induced oxidative DNA damage in the lung and the liver of exposed mice. In return, no significant increase in chromosomal aberrations or gene mutations were noted whatever the type of product. This study demonstrates that e-cigs, at high-power setting, should be considered, contrary to popular belief, as hazardous products in terms of genotoxicity in mouse model.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Aerossóis/toxicidade , Animais , Dano ao DNA , Eletrônica , Camundongos
19.
Toxicol In Vitro ; 79: 105277, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34843886

RESUMO

Assessment of aerosols effects on liver CYP function generally involves aqueous fractions (AF). Although easy and efficient, this method has not been optimized recently or comparatively assessed against other aerosol exposure methods. Here, we comparatively evaluated the effects of the AFs of cigarette smoke (CS) and Tobacco Heating System (THS) aerosols on CYP activity in liver spheroids. We then used these data to develop a physiological aerosol exposure system combining a multi-organs-on-a-chip, 3D lung tissues, liver spheroids, and a direct aerosol exposure system. Liver spheroids incubated with CS AF showed a dose-dependent increase in CYP1A1/1B1, CYP1A2, and CYP2B6 activity and a dose-dependent decrease in CYP2C9, CYP2D6, and CYP3A4 activity relative to untreated tissues. In our physiological exposure system, repeated CS exposure of the bronchial tissues also caused CYP1A1/1B1 and CYP1A2 induction in the bronchial tissues and liver spheroids; but the spheroids showed an increase in CYP3A4 activity and no effect on CYP2C9 or CYP2D6 activity relative to air-exposed tissues, which resembles the results reported in smokers. THS aerosol did not affect CYP activity in bronchial or liver tissues, even at 4 times higher concentrations than CS. In conclusion, our system allows us to physiologically test the effects of CS or other aerosols on lung and liver tissues cultured in the same chip circuit, thus delivering more in vivo like data.


Assuntos
Aerossóis/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Células Cultivadas , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Humanos , Fígado/enzimologia , Fígado/metabolismo , Fumaça/efeitos adversos , Esferoides Celulares/efeitos dos fármacos , Análise Serial de Tecidos/métodos , Produtos do Tabaco/efeitos adversos , Testes de Toxicidade/métodos
20.
Inhal Toxicol ; 33(9-14): 308-324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34772293

RESUMO

OBJECTIVE: Solid composite propellants combustion, in aerospace and defense fields, can lead to complex aerosols emission containing high concentrations of alumina nanoparticles (Al2O3 NPs) and hydrogen chloride gas (HClg). Exposure to these mixtures by inhalation is thus possible but literature data toward their pulmonary toxicity are missing. To specify hazards resulting from these combustion aerosols, a pilot study was implemented. MATERIALS AND METHODS: Male Wistar rats were nose-only exposed to Al2O3 NPs (primary size 13 nm, 10 g/L suspension leading to 20.0-22.1 mg/m3 aerosol) and/or to HClg aerosols (5 ppm target concentration) following two exposure scenarios (single exposures (SE) or repeated exposures (RE)). Bronchoalveolar lavage fluids (BALF) content and lungs histopathology were analyzed 24 h after exposures. RESULTS: Repeated co-exposures increased total proteins and LDH concentrations in BALF indicating alveolar-capillary barrier permeabilization and cytolysis. Early pulmonary inflammation was induced after RE to Al2O3 NPs ± HClg resulting in PMN, TNF-α, IL-1ß, and GRO/KC increases in BALF. Both exposure scenarios resulted in pulmonary histopathological lesions (vascular congestions, bronchial pre-exfoliations, vascular and interalveolar septum edemas). Lung oxidative damages were observed in situ following SE. CONCLUSION: Observed biological effects are dependent on both aerosol content and exposure scenario. Results showed an important pro-inflammatory effect of Al2O3 NPs/HClg mixtures on the lungs of rat 24 h after exposure. This pilot study raises concerns toward potential long-term pulmonary toxicity of combustion aerosols and highlights the importance for further studies to be led in order to define dose limitations and exposure thresholds for risk management at the work place.


Assuntos
Nanopartículas , Pneumonia , Aerossóis/toxicidade , Óxido de Alumínio/toxicidade , Animais , Líquido da Lavagem Broncoalveolar , Ácido Clorídrico , Exposição por Inalação/efeitos adversos , Pulmão , Masculino , Nanopartículas/toxicidade , Projetos Piloto , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA